7

99

Todo en el planeta es íntima dependencia. (Una visión gaiana para un mundo vivo en extinción)*

ELENA KRAUSE

Escritora, bloguera y activista climática y ciclourbana en la ciudad de Valencia

La hierba
Ileva la lluvia sobre millones de lomos,
retiene el suelo con millones de dedos.
... responde a cada amenaza creciendo.
La hierba ama al mundo tanto como a sí misma,
La hierba es feliz, sean los tiempos duros o no,
La hierba pasa enraizada, la hierba camina
de pie.

ARTHUR LUNDKVIST

Extinción en masa

No es casualidad que cuando abres el libro de Elizabeth Kolbert, *La sexta extinción: una historia nada natural*, uno de los primeros capítulos con los que nos obsequia esté dedicado a las ranitas doradas, endémicas de Panamá. Una historia relevante, porque cuando se descubrió que estas ranitas estaban enfermando y muriendo de forma misteriosa y acelerada con respecto a la lenta tasa de extinción de fondo de los anfibios, se empezó a sospechar que estábamos siendo testigos de un fenómeno de extinción en masa; un fenómeno muy raro en la larga historia de la evolución de las especies. Y esto, precisamente, es el objeto central del capítulo y del relato: tomar contacto con la definición y el alcance de lo que significa una extinción en masa.

^{*} Una versión previa de este texto se publicó en *El Salto*: https://www.elsaltodiario.com/ecolo-gia/todo-planeta-es-intima-dependencia-una-vision-gaiana-un-mundo-vivo-extincion

Una extinción en masa es un evento que provoca en un periodo de tiempo pequeño —a escala geológica— una pérdida profunda de biodiversidad. En la historia de la Tierra se han producido cinco grandes extinciones masivas que supusieron el reinicio de toda forma de vida, así que la rápida y súbita desaparición de las ranitas doradas puso encima del tapete del debate científico si estábamos, ya, inmersos en la sexta gran extinción.

Según el Índice Planeta Vivo,¹ se ha producido una disminución media del 73 % de las poblaciones analizadas de vertebrados entre 1970 y 2020. Especialmente en América Latina, que muestra el mayor declive regional. También, se ha estimado que una tercera parte de los corales que construyen arrecifes, una tercera parte de los moluscos de agua dulce, una tercera parte de los tiburones y las rayas, una cuarta parte de los mamíferos, una quinta parte de los reptiles y una sexta parte de las aves se dirigen a la desaparición. Todo ello sin contar que el ascenso de las temperaturas ya está desencadenando eventos sumamente letales que serán causa del exterminio de especies enteras.

Y preocupa, especialmente, la deforestación de las selvas intertropicales porque la destrucción de un kilómetro cuadrado de hábitat en los trópicos compromete potencialmente la supervivencia de diez veces más especies que la destrucción de un kilómetro cuadrado en las regiones templadas, ya que a medida que nos acercamos al ecuador del planeta el número de especies y la biodiversidad aumentan. Por esto, conservar el Amazonas y detener su degradación antes de traspasar un punto de no retorno debería ser un objetivo primordial para el conjunto de la humanidad en este siglo.

Pero volvamos a la historia de las pequeñas ranitas. En 2007 se filmó por última vez en su medio silvestre a una rana dorada. Actualmente se cree que está extinta en estado salvaje. El agente asesino que acabó con estos anfibios era un hongo que hoy se ha extendido por todo el planeta viajando en nuestros barcos y aviones y que amenaza a gran parte de la población mundial de anfibios. Un hongo oriundo de Asia, inocuo en sus ecosistemas de origen, hoy fatal viajero globalizado a lomos del transporte y comercio mundial.

Infortunadamente y con no poca tristeza, llevo años leyendo el «Informe Planeta Vivo».² Una y otra vez, informe tras informe, se advierte del declive mundial de la biodiversidad. Las causas esenciales que amenazan a las especies son básicamente el cambio de los usos del suelo, la introducción de especies invasoras y el cambio climático. Sin embargo, leer los libros de Kolbert ³ y

¹ WWF (2024). «Informe Planeta Vivo 2024. Un sistema en peligro». WWF, Gland, Suiza.

² Es relevante destacar que en la versión original de este texto publicada en *El Salto* en julio de 2023 el dato, extraído del «Informe Planeta Vivo 2022», era este: «Según el Índice Planeta Vivo se ha producido una disminución media del 69 % de las poblaciones analizadas de animales salvajes entre 1970 y 2018».

³ Kolbert, E. (2015). La sexta extinción. Editorial Crítica.

Leakey ⁴ sobre este tema me ha supuesto la comprensión profunda de la envergadura de algunas de estas amenazas.

No pocas veces se dice que nuestra huella, la huella de nuestra civilización en el planeta, tiene el atributo de una fuerza geológica por su absoluta capacidad de transformar la corteza terrestre. Si esto es así, lo es en virtud del

uso de los combustibles fósiles que entre otras cosas nos permiten extraer y mover toneladas y toneladas de materias primas, personas y seres vivos de parte a parte del planeta a una escala nunca conocida. Ramón Margalef decía que el transporte horizontal masivo dependiente de energía externa (vo añadiré fosilista) es una perturbación contranatura.⁵ Lo cierto es que tiene graves repercusiones en el sistema terrestre. La primera de ellas y más conocida es el calentamiento global. Otro fleco menos conocido es lo que suponen las redes mundiales de transporte en la introducción de especies alóctonas. Introducir en un territorio ajeno una nueva especie, en ocasiones, puede tener efectos desoladores en el equilibrio ecológico de ese hábitat porque es una amenaza de primer orden para las especies autóctonas. No es difícil de entender, las especies que aterrizan en territorios lejanos dejan atrás miles de años de coevolución con sus enemigos y depredadores y sin esa interacción, sin ese límite, si el entorno les es favorable, pronto proliferan disputando el espacio de las especies nativas. En la práctica, este fenómeno supone revertir lo que en la historia evolutiva de la vida en la Tierra supuso la fragmentación de Pangea en varios continentes, puesto que el aislamiento y las

barreras físicas (como un océano) propician la evolución y desarrollo de nuevas y sorprendentes especies. Así que un mundo con un solo continente contendría, por poner un ejemplo, solamente alrededor de una tercera parte de las especies de mamíferos que existen en la actualidad. Involuntaria o voluntariamente, hacemos de puente entre territorios remotos y al hacerlo introducimos especies exóticas a un ritmo trepidante. De modo que el mundo globalizado está simplificando la biosfera y homogeneizando la biodiversidad. A esto le han venido a llamar la *Nueva Pangea*. Otra forma de expresarlo es que estamos revirtiendo el proceso evolutivo de millones y millones de años que derivó de la fragmentación de la corteza terrestre en varios conti-

No me quedo aquí y continúo deshilachando las otras amenazas que describe el «Informe Planeta Vivo». En la historia geológica de la Tierra existieron otros cambios climáticos, épocas de calentamiento global o enfriamiento. Casi siempre la respuesta de las especies vivas fue la migración: plantas, invertebrados y vertebrados se desplazaron en busca de climas más benignos. Lo

nentes.

⁴ Leakey, R. E. & Lewin, R. (1998). La sexta extinción: el futuro de la vida y de la humanidad. Barcelona: Tusquets Editores.

⁵ Margalef, R. (1980). La Biosfera, entre la termodinámica y el juego. Barcelona: Omega.

hicieron en una ventana de tiempo lo suficientemente lenta como para que los bosques y selvas y sus gigantes de pies más profundos, los árboles, tuvieran la oportunidad de trasladarse a otras latitudes y altitudes más seguras. Y esto es el quid de la cuestión: tuvieron «tiempo». Aunque *nuestro cambio climático* es de dimensiones parecidas a otros del pasado, la velocidad no lo es. Este calentamiento se está produciendo a una velocidad tal que las especies tendrían que moverse diez veces más rápido de lo que lo hicieron, por ejemplo, en la última glaciación. Y en un más difícil todavía, tendrán que superar los obstáculos que las actividades humanas han creado. Y si bien algunas especies podrán conseguirlo, ¿cuántas no lo lograrán?

Y luego está la otra cara, lo que apodan como diablo gemelo del calentamiento global: la acidificación de los océanos. Un mecanismo por el cual el mar está absorbiendo el dióxido de carbono que emitimos a la atmósfera, enlenteciendo el efecto invernadero, pero transformando irreversiblemente el PH de los océanos. De tal modo que alterar la química oceánica modifica la química interna de los organismos, la composición de las comunidades microbianas y la disposición de nutrientes como el hierro y el nitrógeno. Asimismo, fomenta la proliferación de algas tóxicas y afecta a la fotosíntesis. Y, no menos importante, una de sus consecuencias más trágicas es que el PH ácido de las aguas marinas es veneno corrosivo para los organismos calcificadores entre los que se encuentran los corales y sus arrecifes. Maravilla de biodiversidad marina, constructores de paisaje, hogar y eje trófico del que depende la vida de innumerables seres. Una vez más la ciencia de las extinciones nos habla desde un pasado remoto: si hay un mecanismo común a tres de los cinco eventos de aniquilación masivos es la acidificación de los mares y en todos los casos supuso la mortandad de casi toda forma de vida.

Me he dejado para el final de esta primera parte lo que «Planeta Vivo» considera como la principal causa de extinción de las especies: los cambios de los usos del suelo. Hecho que siempre conlleva, entre otros males, una crítica y peligrosa fragmentación de los hábitats naturales. Solo tienes que entrar en el instituto cartográfico de tu comunidad y solapar dos mapas: el de los usos del suelo y el de carreteras. El resultado es un mapa muy expresivo y gráfico que representa un territorio antrópico y fragmentado.

Existe una relación coherente entre el área de distribución y la abundancia de una especie.⁶ (Un caso muy obvio y claro es el de los grandes carnívoros que necesitan territorios muy vastos para campear). Así pues, la agricultura, la ganadería, la construcción de infraestructuras urbanas y viarias, la deforestación, la alteración de los cursos fluviales y de humedales influyen en el cómputo total de especies y reducen sus poblaciones, lo que a su vez las hace más sensibles al azar y a la mala suerte. Con nuestras actividades nos apropiamos

⁶ Wilson, E. O. (2017). Medio planeta. Barcelona: Debate.

del espacio vital de otros seres, desplazándolos, aislándolos o asesinándolos. Es, en toda regla, una versión moderna del *Lebensraum* nazi.

No obstante, en la biosfera nada es por separado y como los ecosistemas están formados por comunidades ecológicas estrechamente relacionadas entre sí y con su hábitat, estas amenazas casi siempre suponen terribles e inesperadas sinergias. Por ejemplo, deforestar un bosque para convertirlo en terreno agrícola reduce el hábitat de los seres que lo pueblan, disminuye la captura de CO₂, influye en el régimen de lluvias local e introduce contaminantes en los cursos de los ríos degradando los hábitats acuáticos. O, por ejemplo, la desaparición de una especie depredadora o herbívora afecta al resto del ecosistema produciendo cambios —a veces desastrosos— no solo bióticos, sino también abióticos. Algo parecido sucede cuando se introduce una especie invasora.

Creo que esto que escribe Jordi Palau, en su obra *Rewilding Iberia* —citando otro trabajo— resume bien lo hasta aquí expuesto: «Una especie convierte el planeta en su gran colonia, adapta todos los ecosistemas para que satisfagan sus necesidades y termina creando un entorno donde solo sobreviven las especies más oportunistas». No puedo encontrar una mejor definición de *Antropoceno*.

Pero esa biosfera simple, silenciosa, solitaria y uniforme, esa edad de la soledad, ese Eremoceno —como lo llamaba Edward O. Wilson—, ese paisaje poblado de ausencias y colonizado por nuestro ganado y nuestros monocultivos, que desgarra y descose la intrincada —y apenas comprendida— malla de interdependencias, puede arrastrarnos a una cascada imparable de destrucción de la que no habrá retorno.

La holobionte

Y ahora, las preguntas urgentes que quiero tratar de responder son: ¿cuán importante es la biodiversidad en el planeta?; y ¿por qué debemos protegerla? Y justo en este punto, quiero recordar el estudio de Lynn Margulis sobre la endosimbiosis seriada que demostró que la simbiosis (la cooperación estrecha e íntima entre organismos) es una fuerza clave en la historia evolutiva de la vida en la Tierra. Una visión revolucionaria y hermanada con la teoría de Gaia de James Lovelock, en la que también participó Margulis. Según esta teoría, la atmósfera y la parte superficial del planeta Tierra se comportan como un sistema en el que los seres vivos regulan las condiciones idóneas que permiten la vida. 9

103

⁷ Palau, J. (2020). Rewilding Iberia. Explorando el potencial de la renaturalización en España. Barcelona: Lynx Edicions.

⁸ Margulis, L. (2002). Planeta simbiótico: un nuevo punto de vista sobre la evolución. Debate.

⁹ Lovelock, J. (1993). *Edades de Gaia*. Barcelona: Tusquets.

En palabras de Lovelock, en Gaia la evolución de los organismos y su ambiente es un proceso único e inseparable. Por ejemplo, los árboles actúan como una bomba gigante que extrae el dióxido de carbono del aire y lo entierra en las profundidades del suelo donde reacciona con las rocas y puede eliminarse. Es por esta razón —comparado con otros planetas del sistema solar— que nuestra atmósfera tiene un bajo porcentaje de carbono y nuestro planeta es habitable. Hay una relación inversa entre la abundancia de vegetación y la abundancia de CO₂. La vida es el primer gran regulador climático.

Pondré otro ejemplo: es la vida vegetal la que propicia el oxígeno y es el oxígeno el que propicia la formación de la capa de ozono y son el oxígeno y el ozono los que impiden que el agua se evapore en la infinitud del cosmos. ¹⁰ O, por ejemplo: gracias al fósforo atesorado en el desierto del Sahara, que el paso del tiempo desmenuza en polvo, que luego el viento eleva y lleva al otro lado del océano, es que el Amazonas florece y crece. Del mismo modo, todos los seres vivos forman parte de los ciclos bioquímicos de la Tierra. Esos ciclos que en una danza circular y planetaria reencarnan constantemente la alquimia de la vida y nos reconcilian con la muerte.

Todo en el planeta es íntima dependencia. La biosfera es una infinita y prodigiosa red de relaciones en la que todos los seres terrícolas participamos y de la que formamos parte. Además, la biodiversidad y la diversidad genética son verdaderos garantes de la resiliencia y resistencia de la red. La biosfera es como un gran holobionte formado por billones y billones de seres vivos cuya actividad vital coordinada y colectiva modula la atmósfera, mantiene la idónea salinidad de los mares, controla la temperatura global y salvaguarda el agua en nuestro hogar.

Así como Margulis nos mostró que nuestros cuerpos son universos simbióticos y que más allá de ser seres unitarios somos multitudes en continuas interacciones cruciales para nuestra salud, del mismo modo, la teoría de Gaia nos muestra que la biosfera es una «entidad» global, multiunitaria, autoorganizada y autorregulada en la que todos dependemos de todos y que realimenta la propia vida en el planeta. Somos radicalmente ecodependientes. Y, por ello, para abordar cualquier tema relacionado con la conservación de ecosistemas y especies, es imprescindible hacerlo desde un punto de vista sistémico ya que en los sistemas vivos el todo es mucho más que la suma de las partes. 11

Sin embargo, vivimos en una sociedad profundamente mecanicista que reduce el valor de la naturaleza a un precio. Y por lo tanto, es natural que la divulgación en torno a las razones por las que debemos conservar y proteger la

¹⁰ De Castro Carranza, C. (2019). Reencontrando a Gaia: a hombros de James Lovelock y Lynn Margulis. Ediciones del Genal.

¹¹ Capra, F. & Sempau, D. (1998). La trama de la vida (pp. 307-314). Barcelona: Anagrama.

biota siempre acaben expresándose en magnitudes económicas. Bajo mi punto de vista, es persistir en el error y no sirve para superar nuestro pernicioso utilitarismo y antropocentrismo. Ya que, si concebimos un mundo donde la naturaleza no tiene más que un valor instrumental, esto implica una conducta diferente a otro mundo en el que valoramos la naturaleza *per se* más allá de nuestro provecho. Pero, además, si justamente la mercantilización de la vida está detrás de las grandes crisis ecológicas, ¿cómo corregiremos el problema aplicando la misma rúbrica que lo ocasiona?

Y es que hay aspectos que no solo no se pueden medir, sino que esconden virtudes emergentes e inesperadas. ¿Por qué un árbol es más preciado por su madera que por su condición de hogar de infinidad de seres o como expulsor de oxígeno o artífice de lluvia? ¿Cómo mides lo pequeño, lo invisible, lo que aún no tiene nombre, lo que todavía no conoces? ¿Cómo mides y valoras la complejidad y la trama de interacciones que lleva implícita una comunidad ecológica? No se puede, la vida no se puede medir, ni contabilizar, ni presupuestar. La vida no está sujeta a nuestras construcciones humanas. Persistir en esta visión materialista y parcelaria de la biosfera es un suicidio autocomplaciente y colectivo, es lanzarnos en masa contra la alambrada. Trascenderla, por el contrario, es esencial para abordar los retos y dilemas futuros.

Y en este instante de la historia y de mi texto, en primer lugar, todo debe comenzar con el reconocimiento honesto de que somos la causa de esta sexta extinción en masa. Y nosotros, simbiontes, para no hacer acrobacias mentales que nos inmovilicen en nuestro antropocentrismo, deberíamos asumir que la simbiosis —que impregna cada rincón de la biosfera, motor de la evolución, y el mecanismo de sobrevivencia y novedad por excelencia— es la Piedra Rosetta que nos permite comprender que la protección de la biodiversidad es el único instrumento que tenemos para protegernos a nosotros mismos. He aquí la razón fundamental: nosotros somos los otros. ★

105